Copied to
clipboard

G = C62.75D4order 288 = 25·32

59th non-split extension by C62 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.75D4, (C3×D4).44D6, (C3×Q8).68D6, (C2×C12).163D6, (C3×C12).155D4, C35(Q8.14D6), C327Q1610C2, C329SD1610C2, C12.58D616C2, C12.120(C3⋊D4), C12.105(C22×S3), (C6×C12).155C22, (C3×C12).109C23, C4.25(C327D4), C3225(C8.C22), C324C8.18C22, (D4×C32).29C22, C22.6(C327D4), (Q8×C32).30C22, C324Q8.33C22, D4.9(C2×C3⋊S3), Q8.14(C2×C3⋊S3), C4○D4.4(C3⋊S3), (C3×C4○D4).19S3, (C3×C6).295(C2×D4), C6.136(C2×C3⋊D4), C4.19(C22×C3⋊S3), (C2×C6).28(C3⋊D4), (C32×C4○D4).6C2, (C2×C324Q8)⋊17C2, C2.25(C2×C327D4), (C2×C4).22(C2×C3⋊S3), SmallGroup(288,808)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C62.75D4
C1C3C32C3×C6C3×C12C324Q8C2×C324Q8 — C62.75D4
C32C3×C6C3×C12 — C62.75D4
C1C2C2×C4C4○D4

Generators and relations for C62.75D4
 G = < a,b,c,d | a6=b6=1, c4=d2=b3, ab=ba, cac-1=a-1b3, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=c3 >

Subgroups: 556 in 180 conjugacy classes, 65 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C32, Dic3, C12, C12, C2×C6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3×C6, C3×C6, C3⋊C8, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C8.C22, C3⋊Dic3, C3×C12, C3×C12, C62, C62, C4.Dic3, D4.S3, C3⋊Q16, C2×Dic6, C3×C4○D4, C324C8, C324Q8, C324Q8, C2×C3⋊Dic3, C6×C12, C6×C12, D4×C32, D4×C32, Q8×C32, Q8.14D6, C12.58D6, C329SD16, C327Q16, C2×C324Q8, C32×C4○D4, C62.75D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C3⋊D4, C22×S3, C8.C22, C2×C3⋊S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, Q8.14D6, C2×C327D4, C62.75D4

Smallest permutation representation of C62.75D4
On 144 points
Generators in S144
(1 87 141 99 118 121)(2 126 119 104 142 84)(3 81 143 101 120 123)(4 128 113 98 144 86)(5 83 137 103 114 125)(6 122 115 100 138 88)(7 85 139 97 116 127)(8 124 117 102 140 82)(9 90 48 132 58 20)(10 17 59 129 41 95)(11 92 42 134 60 22)(12 19 61 131 43 89)(13 94 44 136 62 24)(14 21 63 133 45 91)(15 96 46 130 64 18)(16 23 57 135 47 93)(25 78 53 110 35 67)(26 72 36 107 54 75)(27 80 55 112 37 69)(28 66 38 109 56 77)(29 74 49 106 39 71)(30 68 40 111 50 79)(31 76 51 108 33 65)(32 70 34 105 52 73)
(1 112 48 5 108 44)(2 45 109 6 41 105)(3 106 42 7 110 46)(4 47 111 8 43 107)(9 114 76 13 118 80)(10 73 119 14 77 115)(11 116 78 15 120 74)(12 75 113 16 79 117)(17 32 104 21 28 100)(18 101 29 22 97 25)(19 26 98 23 30 102)(20 103 31 24 99 27)(33 136 87 37 132 83)(34 84 133 38 88 129)(35 130 81 39 134 85)(36 86 135 40 82 131)(49 92 127 53 96 123)(50 124 89 54 128 93)(51 94 121 55 90 125)(52 126 91 56 122 95)(57 68 140 61 72 144)(58 137 65 62 141 69)(59 70 142 63 66 138)(60 139 67 64 143 71)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 4 5 8)(2 7 6 3)(9 12 13 16)(10 15 14 11)(17 18 21 22)(19 24 23 20)(25 28 29 32)(26 31 30 27)(33 40 37 36)(34 35 38 39)(41 46 45 42)(43 44 47 48)(49 52 53 56)(50 55 54 51)(57 58 61 62)(59 64 63 60)(65 68 69 72)(66 71 70 67)(73 78 77 74)(75 76 79 80)(81 84 85 88)(82 87 86 83)(89 94 93 90)(91 92 95 96)(97 100 101 104)(98 103 102 99)(105 110 109 106)(107 108 111 112)(113 114 117 118)(115 120 119 116)(121 128 125 124)(122 123 126 127)(129 130 133 134)(131 136 135 132)(137 140 141 144)(138 143 142 139)

G:=sub<Sym(144)| (1,87,141,99,118,121)(2,126,119,104,142,84)(3,81,143,101,120,123)(4,128,113,98,144,86)(5,83,137,103,114,125)(6,122,115,100,138,88)(7,85,139,97,116,127)(8,124,117,102,140,82)(9,90,48,132,58,20)(10,17,59,129,41,95)(11,92,42,134,60,22)(12,19,61,131,43,89)(13,94,44,136,62,24)(14,21,63,133,45,91)(15,96,46,130,64,18)(16,23,57,135,47,93)(25,78,53,110,35,67)(26,72,36,107,54,75)(27,80,55,112,37,69)(28,66,38,109,56,77)(29,74,49,106,39,71)(30,68,40,111,50,79)(31,76,51,108,33,65)(32,70,34,105,52,73), (1,112,48,5,108,44)(2,45,109,6,41,105)(3,106,42,7,110,46)(4,47,111,8,43,107)(9,114,76,13,118,80)(10,73,119,14,77,115)(11,116,78,15,120,74)(12,75,113,16,79,117)(17,32,104,21,28,100)(18,101,29,22,97,25)(19,26,98,23,30,102)(20,103,31,24,99,27)(33,136,87,37,132,83)(34,84,133,38,88,129)(35,130,81,39,134,85)(36,86,135,40,82,131)(49,92,127,53,96,123)(50,124,89,54,128,93)(51,94,121,55,90,125)(52,126,91,56,122,95)(57,68,140,61,72,144)(58,137,65,62,141,69)(59,70,142,63,66,138)(60,139,67,64,143,71), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,4,5,8)(2,7,6,3)(9,12,13,16)(10,15,14,11)(17,18,21,22)(19,24,23,20)(25,28,29,32)(26,31,30,27)(33,40,37,36)(34,35,38,39)(41,46,45,42)(43,44,47,48)(49,52,53,56)(50,55,54,51)(57,58,61,62)(59,64,63,60)(65,68,69,72)(66,71,70,67)(73,78,77,74)(75,76,79,80)(81,84,85,88)(82,87,86,83)(89,94,93,90)(91,92,95,96)(97,100,101,104)(98,103,102,99)(105,110,109,106)(107,108,111,112)(113,114,117,118)(115,120,119,116)(121,128,125,124)(122,123,126,127)(129,130,133,134)(131,136,135,132)(137,140,141,144)(138,143,142,139)>;

G:=Group( (1,87,141,99,118,121)(2,126,119,104,142,84)(3,81,143,101,120,123)(4,128,113,98,144,86)(5,83,137,103,114,125)(6,122,115,100,138,88)(7,85,139,97,116,127)(8,124,117,102,140,82)(9,90,48,132,58,20)(10,17,59,129,41,95)(11,92,42,134,60,22)(12,19,61,131,43,89)(13,94,44,136,62,24)(14,21,63,133,45,91)(15,96,46,130,64,18)(16,23,57,135,47,93)(25,78,53,110,35,67)(26,72,36,107,54,75)(27,80,55,112,37,69)(28,66,38,109,56,77)(29,74,49,106,39,71)(30,68,40,111,50,79)(31,76,51,108,33,65)(32,70,34,105,52,73), (1,112,48,5,108,44)(2,45,109,6,41,105)(3,106,42,7,110,46)(4,47,111,8,43,107)(9,114,76,13,118,80)(10,73,119,14,77,115)(11,116,78,15,120,74)(12,75,113,16,79,117)(17,32,104,21,28,100)(18,101,29,22,97,25)(19,26,98,23,30,102)(20,103,31,24,99,27)(33,136,87,37,132,83)(34,84,133,38,88,129)(35,130,81,39,134,85)(36,86,135,40,82,131)(49,92,127,53,96,123)(50,124,89,54,128,93)(51,94,121,55,90,125)(52,126,91,56,122,95)(57,68,140,61,72,144)(58,137,65,62,141,69)(59,70,142,63,66,138)(60,139,67,64,143,71), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,4,5,8)(2,7,6,3)(9,12,13,16)(10,15,14,11)(17,18,21,22)(19,24,23,20)(25,28,29,32)(26,31,30,27)(33,40,37,36)(34,35,38,39)(41,46,45,42)(43,44,47,48)(49,52,53,56)(50,55,54,51)(57,58,61,62)(59,64,63,60)(65,68,69,72)(66,71,70,67)(73,78,77,74)(75,76,79,80)(81,84,85,88)(82,87,86,83)(89,94,93,90)(91,92,95,96)(97,100,101,104)(98,103,102,99)(105,110,109,106)(107,108,111,112)(113,114,117,118)(115,120,119,116)(121,128,125,124)(122,123,126,127)(129,130,133,134)(131,136,135,132)(137,140,141,144)(138,143,142,139) );

G=PermutationGroup([[(1,87,141,99,118,121),(2,126,119,104,142,84),(3,81,143,101,120,123),(4,128,113,98,144,86),(5,83,137,103,114,125),(6,122,115,100,138,88),(7,85,139,97,116,127),(8,124,117,102,140,82),(9,90,48,132,58,20),(10,17,59,129,41,95),(11,92,42,134,60,22),(12,19,61,131,43,89),(13,94,44,136,62,24),(14,21,63,133,45,91),(15,96,46,130,64,18),(16,23,57,135,47,93),(25,78,53,110,35,67),(26,72,36,107,54,75),(27,80,55,112,37,69),(28,66,38,109,56,77),(29,74,49,106,39,71),(30,68,40,111,50,79),(31,76,51,108,33,65),(32,70,34,105,52,73)], [(1,112,48,5,108,44),(2,45,109,6,41,105),(3,106,42,7,110,46),(4,47,111,8,43,107),(9,114,76,13,118,80),(10,73,119,14,77,115),(11,116,78,15,120,74),(12,75,113,16,79,117),(17,32,104,21,28,100),(18,101,29,22,97,25),(19,26,98,23,30,102),(20,103,31,24,99,27),(33,136,87,37,132,83),(34,84,133,38,88,129),(35,130,81,39,134,85),(36,86,135,40,82,131),(49,92,127,53,96,123),(50,124,89,54,128,93),(51,94,121,55,90,125),(52,126,91,56,122,95),(57,68,140,61,72,144),(58,137,65,62,141,69),(59,70,142,63,66,138),(60,139,67,64,143,71)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,4,5,8),(2,7,6,3),(9,12,13,16),(10,15,14,11),(17,18,21,22),(19,24,23,20),(25,28,29,32),(26,31,30,27),(33,40,37,36),(34,35,38,39),(41,46,45,42),(43,44,47,48),(49,52,53,56),(50,55,54,51),(57,58,61,62),(59,64,63,60),(65,68,69,72),(66,71,70,67),(73,78,77,74),(75,76,79,80),(81,84,85,88),(82,87,86,83),(89,94,93,90),(91,92,95,96),(97,100,101,104),(98,103,102,99),(105,110,109,106),(107,108,111,112),(113,114,117,118),(115,120,119,116),(121,128,125,124),(122,123,126,127),(129,130,133,134),(131,136,135,132),(137,140,141,144),(138,143,142,139)]])

51 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D4E6A6B6C6D6E···6P8A8B12A···12H12I···12T
order122233334444466666···68812···1212···12
size11242222224363622224···436362···24···4

51 irreducible representations

dim1111112222222244
type++++++++++++--
imageC1C2C2C2C2C2S3D4D4D6D6D6C3⋊D4C3⋊D4C8.C22Q8.14D6
kernelC62.75D4C12.58D6C329SD16C327Q16C2×C324Q8C32×C4○D4C3×C4○D4C3×C12C62C2×C12C3×D4C3×Q8C12C2×C6C32C3
# reps1122114114448818

Matrix representation of C62.75D4 in GL8(𝔽73)

11000000
720000000
00010000
0072720000
00000010
00000001
00001000
00000100
,
7272000000
10000000
0072720000
00100000
000072000
000007200
000000720
000000072
,
5110000000
3222000000
0042700000
0028310000
000037364545
000037372845
000028283637
000045283636
,
5110000000
3222000000
0042700000
0028310000
000037364545
000036364528
000045453736
000045283636

G:=sub<GL(8,GF(73))| [1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[51,32,0,0,0,0,0,0,10,22,0,0,0,0,0,0,0,0,42,28,0,0,0,0,0,0,70,31,0,0,0,0,0,0,0,0,37,37,28,45,0,0,0,0,36,37,28,28,0,0,0,0,45,28,36,36,0,0,0,0,45,45,37,36],[51,32,0,0,0,0,0,0,10,22,0,0,0,0,0,0,0,0,42,28,0,0,0,0,0,0,70,31,0,0,0,0,0,0,0,0,37,36,45,45,0,0,0,0,36,36,45,28,0,0,0,0,45,45,37,36,0,0,0,0,45,28,36,36] >;

C62.75D4 in GAP, Magma, Sage, TeX

C_6^2._{75}D_4
% in TeX

G:=Group("C6^2.75D4");
// GroupNames label

G:=SmallGroup(288,808);
// by ID

G=gap.SmallGroup(288,808);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,254,219,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^4=d^2=b^3,a*b=b*a,c*a*c^-1=a^-1*b^3,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽